Chemistry

Chemistry. It's the core science: the study of the properties, composition and changes that occur in matter. When you study chemistry, you analyze issues that influence every aspect of life on Earth.

Whether you choose the bachelor of science degree (for those targeting careers in industry or planning to pursue a graduate degree) or the bachelor of arts degree (appropriate for those seeking work in medicine, dentistry or secondary school teaching), CLU's chemistry curriculum provides the knowledge base required of the discipline.

Because of the program's strong emphasis on laboratory experience, our advanced chemistry students are taught how to design and carry out their own experiments and encouraged to work on independent research projects. They also have the opportunity to do supported research with faculty members during the summer. Many students have been accepted to summer research programs at Ph.D.-granting institutions.

The department possesses modern instruments which students use regularly in their classes and research projects. These include

- Fourier transform infrared and nuclear magnetic resonance spectrometers
- gas chromatographs with several types of detectors
- mass spectrometer
- electron capture
- flame ionization
- rapid-scan UV-vis spectrometer

CLU chemistry students are encouraged to pursue internships and REU programs during the course of their studies. Recent CLU students have interned at Ventura County Crime Lab, Amgen and Rockwell Science Center, and have attended REU programs at Colorado State and SUNY Stoneybrook.

These undergraduate research opportunities translate into success for Cal Lutheran's chemistry graduates, who have been accepted into many of the nation's most respected medical, dental, and graduate programs including:

- University of California at
- San Diego
- Irvine
- Santa Barbara
- Yale University
- Indiana University
- University of Ohio

Bachelor of Arts in Chemistry

32 credits minimum, 20 credits upper division

CHEM 151	General Chemistry	4
CHEM 151L	General Chemistry Lab	
CHEM 152	General Chemistry II	
CHEM 152L	General Chemistry II Lab	4
CHEM 305/305L	Quantitative Analysis	
	and Quantitative Analysis Lab	
CHEM 331	Organic Chemistry	4
CHEM 332	Organic Chemistry II	4
CHEM 341	Organic Chemistry Lab	4
CHEM 342	Organic Chemistry II Lab	1
CHEM 485	Capstone Seminar	1
Chemistry Elective Credits (at least 4 Upper Division)	2	6
Total Hours		32

Required Supporting Courses

Select one of the following:	Mechanics and Thermodynamics-Algebra
PHYS 201/201L/202/202L	Mand Mechanics and Thermodynamics-Algebra Lab and Electricity, Magnetism, and Optics - Algebra and Electricity, Magnetism, and Optics - Algebra Lab
PHYS 211/211L/212/212L	Mechanics and Thermodynamics-Calculus and Mechanics and Thermodynamics-Calculus Lab and Electricity, Magnetism, and Optics - Calculus and Electricity, Magnetism, and Optics - Calculus Lab Calculus I
MATH 251	4
Total Hours	

Recommended

MATH 252	Calculus II	4
Total Hours	4	

Bachelor of Science in Chemistry

40 Credits minimum, 28 credits upper division

CHEM 151	General Chemistry	4
CHEM 151L	General Chemistry Lab	4
CHEM 152	General Chemistry II	4
CHEM 152L	General Chemistry II Lab	
CHEM 305/305L	Quantitative Analysis and Quantitative Analysis Lab	4
CHEM 306/306L	Chemical Instrumentation and Chemical Instrumentation Lab	4
CHEM 331	Organic Chemistry	4
CHEM 332	Organic Chemistry II	4
CHEM 341	Organic Chemistry Lab	4
CHEM 342	Organic Chemistry II Lab	4
CHEM 405/405L	Physical Chemistry and Physical Chemistry Lab	4
CHEM 406/406L	Physical Chemistry	4
CHEM 485	and Physical Chemistry Lab	4
Chemistry Elective Credits	Capstone Seminar	4
Total Hours		4

Required Supporting Courses

MATH 251	Calculus I
MATH 252	Calculus II
Select one of the following:	Mechanics and Thermodynamics-Algebra PHYS 201/201L/202/202L and Mechanics and Thermodynamics-Algebra Lab and Electricity, Magnetism, and Optics - Algebra and Electricity, Magnetism, and Optics - Algebra Lab
PHYS 211/211L/212/212L	Mechanics and Thermodynamics-Calculus and Mechanics and Thermodynamics-Calculus Lab and Electricity, Magnetism, and Optics - Calculus and Electricity, Magnetism, and Optics - Calculus Lab
Total Hours	

Recommended

CHEM 411	Advanced Inorganic Chemistry	3
MATH 261	Calculus III	4
MATH 265	Differential Equations	4
Total Hours		11

Minor in Chemistry

CHEM 151	General Chemistry	4
CHEM 151L	General Chemistry Lab	1
CHEM 152	General Chemistry II	4
CHEM 152L	General Chemistry II Lab	1
Select three courses from chemistry ${ }^{1}$	12	
Total Hours	22	

1 Taken in at least two areas of chemistry (200 level or above). CHEM 425 cannot be used to fulfill the minor if it is also being used to fulfill a major requirement.

Courses

Lower Division

CHEM 111. Chemistry and the Environment. (4).
Explores the interface between chemistry and the world we live in, with particular emphasis on environmental issues such as pollution, energy depletion and global warming. The chemical principles required to understand these topics are introduced on an as-needed basis. This course is primarily intended for non-science majors and cannot be used for credit toward a chemistry degree. Lecture, 3 hours/week; Laboratory, 3 hours/week.

CHEM 111L. Chemistry and the Environment Lab. (0).
CHEM 151. General Chemistry. (4).
Covers the fundamental theories, principles and laws of chemistry, plus the properties of elements and compounds. Prerequisites: MATH 151: high school chemistry; Math Placement Exam section I score of 14 or better or completion of MATH 110; Corequisite: CHEM 151L.

CHEM 151L. General Chemistry Lab. (1).
Covers the laboratory techniques and apparatus of chemistry, plus the illustrations of quantitative relationships in chemistry. Includes a systematic course in theory and techniques of inorganic qualitative analysis. Corequisite: CHEM 151L: CHEM 151.

CHEM 152. General Chemistry II. (4).
Covers the fundamental theories, principles and laws of chemistry, plus the properties of elements and compounds. Prerequisites: CHEM 151: high school chemistry; Math Placement Exam section I score of 14 or better or completion of MATH 110; Corequisite: CHEM 152L.

CHEM 152L. General Chemistry II Lab. (1).
Covers the laboratory techniques and apparatus of chemistry, plus the illustrations of quantitative relationships in chemistry. Includes a systematic course in theory and techniques of inorganic qualitative analysis. Corequisite: CHEM 152.

CHEM 201. Elementary Organic Chemistry. (4).
An introduction to the study of the aliphatic and aromatic compounds of biochemical interest. Includes fundamentals of organic chemistry for students of biology, nursing, physical education and elementary education. Lecture, 3 hours/week; Laboratory, 3 hours/week. Prerequisite: CHEM 111 or CHEM 152.

CHEM 201L. Elementary Organic Chemistry Lab. (0).

Upper Division

CHEM 301. Environmental Chemistry. (4).
In this course, principles of chemistry will be applied to environmental problems including water, air and soil chemistry and toxicology. Lecture, 3 hours/ week; Lab, 3 hours/week. Prerequisite: CHEM 201.

CHEM 301L. Environmental Chemistry Lab. (0).

CHEM 305. Quantitative Analysis. (4).
Covers the principles and techniques of gravimetric and volumetric analysis. Lecture, 3 hours/week; Laboratory, 3 hours/week.
CHEM 305L. Quantitative Analysis Lab. (0).
CHEM 306. Chemical Instrumentation. (4).
Covers the theories and application of instrumentation in chemistry. Lecture, 2 hours/week; Laboratory, 6 hours/week. Prerequisite: CHEM 305.
CHEM 306L. Chemical Instrumentation Lab. (0).
CHEM 331. Organic Chemistry. (4).
Covers the structure, nomenclature, reactions and synthesis of organic compounds, plus the theory and mechanism of organic reactions. Lecture, 4 hours/week.

CHEM 332. Organic Chemistry II. (4).
Covers the structure, nomenclature, reactions and synthesis of organic compounds, plus the theory and mechanism of organic reactions. Lecture, 4 hours/week. Prerequisite CHEM 331.

CHEM 341. Organic Chemistry Lab. (1).
Laboratory work in isolation, characterization and synthesis of organic compounds. Laboratory, 3 hours/week. Corequisite: CHEM 331.

CHEM 342. Organic Chemistry II Lab. (1).
Laboratory work in isolation, characterization and synthesis of organic compounds. Laboratory, 3 hours/week. Corequisite: CHEM 332.

CHEM 405. Physical Chemistry. (4).
The study of kinetic theory, structure of condensed phases, thermodynamics, equilibria, electrochemistry, quantum chemistry and chemical kinetics. Lecture, 3 hours/week; Laboratory, 3 hours/week. Prerequisites: one year each of calculus and physics or consent of instructor.

CHEM 405L. Physical Chemistry Lab. (0).

CHEM 406. Physical Chemistry. (4).
The study of kinetic theory, structure of condensed phases, thermodynamics, equilibria, electrochemistry, quantum chemistry and chemical kinetics. Lecture, 3 hours/week; Laboratory, 3 hours/week. Prerequisites: one year each of calculus and physics or consent of instructor.

CHEM 406L. Physical Chemistry Lab. (0).
CHEM 411. Advanced Inorganic Chemistry. (3).
The advanced treatment of special topics in inorganic chemistry, including atomic structure, classification of elements and inorganic reactions in aqueous and non-aqueous solutions. Lecture, 3 hours/week. Prerequisite: consent of instructor. (on demand).

CHEM 412. Advanced Organic Chemistry. (3).
Further study in organic chemistry, emphasizing synthesis, reaction mechanisms and stereoisomerism. Lecture, 3 hours/week. Prerequisite: CHEM 332 or consent of instructor. (on demand).

CHEM 421. Qualitative Organic Analysis. (3).
The classification, reactions, derivatives and identification of organic compounds. Lecture, 1 hour/week; Laboratory, 6 hours/week. Prerequisite: CHEM 332 and CHEM 342 or consent of instructor. (on demand).

CHEM 421L. Qualitative Organic Analysis Lab. (0).
CHEM 425. Biochemistry. (4).
The structure and function of proteins is covered, along with the structure, function, and metabolism of carbohydrates, lipids, and amino acids. Regulation of proteins and metabolism is emphasized. Lecture, 3 hours; Laboratory, 3 hours/week. Prerequisites: CHEM 331 and CHEM 332. Recommended: BIOL 122 and BIOL 124L. (cross-listed with BIOL 425).

CHEM 425L. Biochemistry Lab. (0).
Prerequisite: Concurrent enrollment in BIOL 425 / CHEM 425. (cross-listed with BIOL 425L).

CHEM 461. Chemical Preparations. (2).

The preparation and purification of selected inorganic or organic compounds; introduces the student to chemical literature and laboratory research methods. Prerequisite: consent of instructor.

CHEM 482. Selected Topics. (1-4).
CHEM 482L. Selected Topics Lab. (1-4).
CHEM 485. Capstone Seminar. (2).
Introduces students to the skills and practices required of professional scientists. Students will gain experience with conducting literature searches, conducting and presenting scientific work, reviewing the work of others and writing research proposals. Prerequisite: senior standing.

CHEM 490. Independent Study. (1-4).
CHEM 492. Internship. (1-4).

